<aside> ๐Ÿ’ก

Curriculum

ํ•œ ํ•™๊ธฐ ์•ˆ์— ๋‹ค์Œ ๋ชฉํ‘œ๋ฅผ ๋‹ฌ์„ฑํ•˜๊ธฐ ์œ„ํ•œ ์ปค๋ฆฌํ˜๋Ÿผ

  1. ๊ทธ๋ž˜ํ”„ ์ด๋ก , DeepWalk, Node2Vec, GNN, GCN, GAT, GraphSAGE ๋“ฑ ์ตœ์‹  ๊ทธ๋ž˜ํ”„ ๊ธฐ๋ฐ˜ ์ธ๊ณต์ง€๋Šฅ ๋ชจ๋ธ์˜ ๊ธฐ์ดˆ๊ฐ€ ๋˜๋Š” ๋ชจ๋ธ๋“ค์„ ์•Œ์•„๋ณธ๋‹ค.
  2. ์ด ๋ชจ๋ธ๋“ค์„ ๊ธฐ๋ฐ˜์œผ๋กœ ์‹ค์ƒํ™œ์— ์–ด๋–ป๊ฒŒ ์“ฐ์ด๋Š”์ง€ Traffic Prediction, Fraud Detection, Recommendation System ๋“ฑ์˜ ์˜ˆ์‹œ๋ฅผ ์‚ดํŽด๋ณธ๋‹ค.
  3. [If possible] ๋ณธ์ธ์ด ๊ด€์‹ฌ์žˆ๋Š” ๋ถ„์•ผ์—์„œ ๊ทธ๋ž˜ํ”„ ๊ธฐ๋ฐ˜ ์ธ๊ณต์ง€๋Šฅ ๋ชจ๋ธ์˜ ํ™œ์šฉ ์˜ˆ์‹œ๋ฅผ ์‚ดํŽด๋ณธ๋‹ค.

Textbook : ํ•ธ์ฆˆ์˜จ ๊ทธ๋ž˜ํ”„ ์ธ๊ณต์‹ ๊ฒฝ๋ง with Python (Maxime Labonne ์›์ €, 2024.05.30.)

</aside>

Tentative Schedule

25F Graph-based AI